MODUL II





MODUL 2

OSCILOSCOPE DAN PENGUKURAN DAYA


1. Pendahuluan[Kembali]

        Oscilloscope atau osiloskop, merupakan salah satu alat ukur elektronik yang paling penting dalam dunia teknik elektro dan fisika. Alat ini digunakan untuk memvisualisasikan dan menganalisis sinyal listrik dalam bentuk gelombang, sehingga memungkinkan pengguna untuk mengamati perilaku sinyal terhadap waktu. Karena memiliki kemampuan untuk menampilkan bentuk gelombang, osiloskop menjadi alat yang sangat berguna untuk mendiagnosis masalah dalam rangkaian elektronik, mengukur parameter sinyal seperti frekuensi, amplitudo dan fase serta memverifikasi kinerja sistem.

2. Tujuan[Kembali]

  1. Dapat menggunakan dan mengetahui kegunaan dari oscilloscope
  2. Dapat mengetahui bentuk gelombang Lissajous
  3. Dapat mengukur daya pada rangkaian beban daya lampu seri
  4. Dapat mengukur daya pada rangkaian beban daya lampu Paralle

                                                   

3. Alat dan Bahan[Kembali]

A.Alat

1.Generator

Function

2.Oscilloscope

Oscilloscope

3.Instrument

Multimeter


4.Module

Pengukuran Daya Bebas Lampu Seri


Pengukuran Daya Beban Lampu Paralel

5.Base Station
6. Jumper


B.Bahan
Resistor






Lampu

4. Dasar Teori[Kembali]

A.Resistor

    Resistor merupakan komponen penting dan sering dijumpai dalam sirkuit Elektronik. Boleh dikatakan hampir setiap sirkuit Elektronik pasti ada Resistor. Tetapi banyak diantara kita yang bekerja di perusahaan perakitan Elektronik maupun yang menggunakan peralatan Elektronik tersebut tidak mengetahui cara membaca kode warna ataupun kode angka yang ada ditubuh Resistor itu sendiri.

    Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.

    Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.

Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :

Tabel kode warna resistor


Perhitungan untuk resistor dengan 4 gelang warna :

Cara menghitung nilai resistor 4 gelang

Masukan angka langusng dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Msukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10(10n)
Merupakan toleransi dari nilai resistor tersebut

Contoh:

Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka ke-2; atau kalikan 105
Gelang ke 4 : Perak = toleransi 10%
Maka nilai resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%

Perhitungan untuk resistor degan 5 gelang warna :



Cara Menghitung Nilai Resistor 5 Gelang Warna

Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan angka langsung dari kode warna Gelang ke-3
Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut

Contoh :

Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5
Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 5 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.

Contoh-contoh perhitungan lainnya :

Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi
 
Cara menghitung Toleransi :
2.200 Ohm dengan Toleransi 5% =
2200 – 5% = 2.090
2200 + 5% = 2.310
ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm


B.Oscilloscope

Osiloskop digunakan untuk mengamati bentuk gelombang dari sinyal listrik.
Selain dapat menunjukkan amplitudo sinyal, osiloskop dapat juga menunjukkan
distorsi dan waktu antara dua peristiwa (seperti lebar pulsa, periode, atau waktu
naik).
Prinsip pengukuran frekuensi dengan metode Lissajous yaitu jika tegangan
sinus diberikan pada input X dan sinyal dengan gelombang sinus yang lain
dimasukan pada input Y, maka pada layar akan terbentuk seperti pada gambar 2.1.
Pada kedua kanal dapat diberikan sinyal tegangan yang bukan berupa sinus.
Gambar yang ditampilkan pada layar, tergantung pada bentuk sinyal yang
diberikan.

Gambar metoda lissajour

Pengukuran Frekuensi

Sinyal yang akan diukur dihubungkan pada input Y, sedangkan function
generator dengan frekuensi yang diketahui dihubungkan pada input X.

Pengukuran frekuensi


Frekuensi generator kemudian diubah, sehingga pada layar ditampilkan
lintasan tertutup yang jelas, frekuensi sinyal dapat ditentukan dari bentuk lintasan
ini:
Perbandingan Frekwensi pada Lissajour


Cara ini hanya mudah dilakukan untuk perbandingan frekuensi yang mudah dan bulat (1:2,1:3,3:4 dts)

C. Lampu
Lampu

Lampu adalah sebuah peranti yang memproduksi cahaya. Kata "Lampu" dapat juga berarti bola Lampu. Lampu pertama kali ditemukan oleh Sir Joseph William Swan.

Lampu adalah sebuah benda yang berfungsi sebagai penerang, lampu memiliki bentuk seperti botol dengan rongga yang berisi kawat kecil yang akan menyalah apabila disambungkan ke aliran listrik.

jika memasang beberapa lampu dengan rangkaian seri, maka nyala yang dihasilkan oleh lampu tersebut tidak menjadi begitu terang. Hal tersebut terjadi, dikarenakan lampu membutuhkan arus listrik yang cukup besar, terutama apabila ada banyak lampu.

Prinsip kerja dari rangkaian seri adalah jika dalam rangkaian listrik tersebut diberi dua lampu, kemudian ada satu sakelar dan sakelar tersebut dimatikan, maka kedua lampu pun akan ikut mati.Hal ini tentu berbeda dengan cara kerja dari rangkaian paralel. Sebab, rangkaian paralel adalah sebuah rangkaian elektronik atau listrik yang proses penyusunannya dilakukan dengan cara bersusun atau sejajar.

Pada rangkaian paralel, rangkaian listrik terhubung secara bercabang atau berderet dan berbeda dengan rangkaian seri. Dikarenakan bercabang, maka setiap komponen yang dilalui oleh arus listrik akan dijumlahkan dan menjadi jumlah total arus secara keseluruhannya.




Komentar

Postingan populer dari blog ini

MODUL I